PUBLICATIONS : UNE SƒLECTION

 

Chapitres de livres et contributions ˆ un ouvrage collectif

 

Kieran, C., Doorman, L.M., & Ohtani, M. (ˆ para”tre). Frameworks and principles for task design. In A. Watson & M. Ohtani (Eds.), Task design in mathematics education. New York: Springer.

 

Kieran, C., & Drijvers, P. (ˆ para”tre). Core ideas and key dimensions: Michle ArtigueÕs theoretical work on digital tools and its impact on mathematics education research. In B. Hodgson, A. Kuzniak, & J.-B. Lagrange (Eds.), Hommage ˆ Michle Artigue. New York: Springer.

 

Kieran, C. (2014). Algebra teaching and learning. In S. Lerman (Ed.), Encyclopedia of Mathematics Education (pp. 27-32). Dordrecht, The Netherlands: Springer Reference.

 

Martinez, C., Guzman, J., & Kieran, C. (2014). El papel de CAS en la promoci—n del razonimiento algebraico y en el surgimiento de teor’a. In L. L—pez Vera (Ed.), Tecnologia computacional en la ense–anza de las matem‡ticas (libro electr—nico, pp. 49-56). Nuevo LŽon, MŽxico: Publicaciones UANL (ISBN: 978-607-27-0301-8).

 

Kieran, C., Krainer, K., Shaugnessy, J.M. (2013). Linking research and practice: Teachers as key stakeholders in mathematics education research. In M.A. Clements, A. Bishop, C. Keitel, J. Kilpatrick, & F. Leung (Eds.), Third international handbook of mathematics education (pp. 361-392). Dordrecht, The Netherlands: Springer.

 

Kieran, C. (2013). The false dichotomy in mathematics education between conceptual understanding and procŽdural skills: An example from algebra. In K. Leatham (Ed.), Vital directions in mathematics education research (pp. 153-171). New York: Springer.

 

Kieran, C., Tanguay, D., & Solares, A. (2012). Researcher-designed resources and their adaptation within classroom teaching practice: Shaping both the implicit and the explicit. In G. Gueudet, B. Pepin, & L. Trouche (Eds.), From text to ÔlivedÕ resources : Mathematics curriculum material and teacher development (pp. 189-213). New York: Springer.

 

Kieran, C. (2011). Overall commentary on early algebraization: Perspectives for research and teaching. In J. Cai & E. Knuth (Eds.), Early algebraization: A global dialogue from multiple perspectives (pp. 579-593). New York: Springer.

 

Kieran, C., & Guzman, J. (2010).  Role of task and technology in provoking teacher change: A case of proofs and proving in high school algebra. In R. Leikin & R. Zazkis (Eds.), Learning through teaching mathematics: Development of teachersÕ knowledge and expertise in practice (pp. 127-152). New York: Springer.

 

Drijvers, P., Kieran, C., & Mariotti, M.-A. (2009). Integrating technology into mathematics education: Theoretical perspectives. In C. Hoyles & J.-B. Lagrange (Eds.), Mathematics education and technology: Rethinking the terrain (pp. 89-132). New York: Springer.

 

Kieran, C., & Saldanha, L. (2008). Designing tasks for the co-development of conceptual and technical knowledge in CAS activity: An example from factoring. In K. Heid & G.W. Blume (Eds.), Research on technology and the teaching and learning of mathematics: Syntheses, cases, and perspectives (Vol. 2, pp. 393-414). Greenwich, CT: Information Age Publishing.

 

Kieran, C. (2007). Learning and teaching algebra at the middle school through college levels: Building meaning for symbols and their manipulation. In F. K. Lester, Jr., (Ed.), Second handbook of research on mathematics teaching and learning (pp. 707-762). Greenwich, CT: Information Age Publishing.

 

Kieran, C., & Guzman, J. (2007). Interaction entre calculatrice technique et thŽorie : ƒmergence de structures numŽriques chez des Žlves de 12 ˆ 15 ans dans un environnement calculatrice. In R. Floris & F. Conne (Eds.), Environnements informatiques, enjeux pour lÕenseignement des mathŽmatiques (pp. 61-74). Genve: deBoeck.

 

Kieran, C. (2006). Research on the learning and teaching of algebra. In A. GutiŽrrez & P. Boero (Eds.), Handbook of research on the psychology of mathematics education (pp. 11-50). Rotterdam: Sense.

 

Kieran, C., & Guzman, J. (2006). The number-theoretic experience of 12- to 15-year-olds in a calculator environment: The intertwining co-emergence of technique and theory. In R. Zazkis & S. R. Campbell (Eds.), Number theory in mathematics education (pp. 173-200). Mahwah, NJ: Lawrence Erlbaum.

 

Kieran, C., & Guzman, J. (2005). Five steps to zero: Students developing elementary number theory concepts when using calculators. In Wm.J. Masalski  (Ed.), Technology-supported mathematics learning environments (Sixty-seventh Yearbook of the National Council of Teachers of Mathematics, pp. 35-50). Reston, VA: The Council.

 

Kieran, C. (2004). The core of algebra: Reflections on its main activities.  In K. Stacey, H. Chick, & M. Kendal (Eds.), The future of the teaching and learning of algebra: The 12th ICMI study (pp. 21-34). Dordrecht, The Netherlands: Kluwer.

 

Kieran, C., & Yerushalmy, M. (2004). Research on the role of technological environments in algebra learning and teaching. In K. Stacey, H. Chick, & M. Kendal (Eds.), The future of the teaching and learning of algebra: The 12th ICMI study (pp. 99-152). Dordrecht, The Netherlands: Kluwer.

 

Kieran, C.  (2003).  The twentieth century emergence of the Canadian mathematics education research community.  In G. Stanic & J. Kilpatrick (Eds.), A history of school mathematics (pp. 1701-1778).  Reston, VA: National Council of Teachers of Mathematics.

 

Cedillo, T., & Kieran, C.  (2003).  Initiating students into algebra with symbol-manipulating calculators.  In J.T. Fey et al. (Eds.), Computer algebra systems in secondary school mathematics education (pp. 219-239).  Reston, VA: National Council of Teachers of Mathematics.

 

Kieran, C.  (2003).  The transition from arithmetic to algebra: A model for conceptualizing school algebra and the role of computer technology in supporting the development of algebraic thinking.  In E. Filloy (Ed.), Matem‡tica educativa: Aspectos de la investigaci—n actual (pp. 121-142).  Mexico City: Fondo de Cultura Econ—mica.

 

Kieran, C. (2002).  Exploring the mathematical discourse of 13-year-old partnered problem solving and its relationship to the mathematics that emerges.  In C. Kieran, E. Forman, & A. Sfard (Eds.), Learning discourse: Discursive approaches to research in mathematics education (pp. 187-228). Dordrecht, The Netherlands: Kluwer Academic.

 

Kieran, C. (2002). A historical perspective on mathematics education research in Canada: The emergence of a community.  In E. Simmt & B. Davis (Eds.), The 25th anniversary conference of the Canadian Mathematics Education Study Group (pp. 165-186).  Kingston, ON: CMESG Program Committee.

 

Sfard, A., & Kieran, C. (2001). Preparing teachers for handling students' mathematical communication:  Gathering knowledge and building tools.  In F. L. Lin & T. J. Cooney (Eds.), Making sense of mathematics teacher education (pp. 187-205).  Dordrecht, The Netherlands: Kluwer.

 

Kieran, C.  (1998).  Models in mathematics education research: A broader view of research results.  In A. Sierpinska & J. Kilpatrick (Eds.), Mathematics education as a research domain: A search for identity (Vol 1, pp. 213-225).  Dordrecht, The Netherlands: Kluwer Academic.

 

Kieran, C.  (1997).  Mathematical concepts at the secondary school level:  The learning of algebra and functions.  In T. Nunes & P. Bryant (Eds.), Learning and teaching mathematics: An international perspective (pp. 133-158).  East Sussex, UK:  Psychology Press.

 

Bednarz, N., Kieran, C., & Lee, L.  (1996).  Approaches to algebra: Perspectives for research and teaching.  In N. Bednarz, C. Kieran, & L. Lee (Eds.), Approaches to algebra: Perspectives for research and teaching (pp. 3-14).  Dordrecht, The Netherlands: Kluwer.

 

Kieran, C., Boileau, A., & Garanon, M.  (1996).  Introducing algebra by means of a technology-supported, functional approach.  In N. Bednarz, C. Kieran, & L. Lee (Eds.), Approaches to algebra:  Perspectives for research and teaching (pp. 257-293).  Dordrecht, The Netherlands: Kluwer.

 

Kieran, C.  (1996).  The changing face of school algebra.  In C. Alsina, J. Alvarez, B. Hodgson, C. Laborde, & A. Perez (Eds.), 8th International Congress on Mathematical Education, Selected Lectures (pp. 271-290).  Sevilla, Spain:  S.A.E.M. Thales.

 

Kieran, C., & Chalouh, L.  (1993).  The transition from arithmetic to algebra.  In D. T. Owens (Ed.), Research ideas for the classroom:  Middle grades mathematics (pp. 179-198).  New York: Macmillan.

 

Kieran, C.  (1993).  Functions, graphing, and technology:  Integrating research on learning and instruction.  In T. A. Romberg, E. Fennema, & T. P. Carpenter (Eds.), Integrating research on the graphical representation of functions (pp. 189-237).  Hillsdale, NJ:  Lawrence Erlbaum.

 

Kieran, C.  (1992). The learning and teaching of school algebra.  In D. A. Grouws (Ed.), Handbook of research on mathematics teaching and learning (pp. 390-419).  New York:  Macmillan (ce chapitre a ŽtŽ traduit ˆ lÕespagnol, au franais et au japonais).

 

Kieran, C.  (1990).  Cognitive processes involved in learning school algebra.  In P. Nesher & J. Kilpatrick (Eds.), Mathematics and cognition:  A research synthesis by the International Group for the Psychology of Mathematics Education (pp. 96-112).  Cambridge, UK:  Cambridge University Press.

 

Kieran, C.  (1990). Perspectives on mathematical literacy.  In S. P. Norris & L. M. Phillips (Eds.), Foundations of literacy policy in Canada (pp. 109-126).  Calgary, AB:  Detselig.

 

Wagner, S., & Kieran, C.  (1989).  An agenda for research on the learning and teaching of algebra.  In S. Wagner & C. Kieran (Eds.), Research issues in the learning and teaching of algebra (pp. 220-237).  Reston, VA: National Council of Teachers of Mathematics; Hillsdale, NJ: Lawrence Erlbaum.

 

Kieran, C., & Wagner, S.  (1989). The Research Agenda Conference on Algebra: Background and issues. In S. Wagner & C. Kieran (Eds.), Research issues in the learning and teaching of algebra (pp. 1-10). Reston, VA: National Council of Teachers of Mathematics; Hillsdale, NJ: Lawrence Erlbaum.

 

Kieran, C.  (1989).  The early learning of algebra: A structural perspective.  In S. Wagner & C. Kieran (Eds.), Research issues in the learning and teaching of algebra (pp. 35-56).  Reston, VA: National Council of Teachers of Mathematics; Hillsdale, NJ: Lawrence Erlbaum.

 

Kieran, C.  (1988). Two different approaches among algebra learners.  In A.F. Coxford (Ed.), The ideas of algebra, K-12 (Yearbook of the National Council of Teachers of Mathematics, pp. 91-96).  Reston, VA: NCTM.

 

Groen, G., & Kieran, C.  (1983).  In search of Piagetian mathematics.  In H. Ginsburg (Ed.), The development of mathematical thinking (pp. 351-375).  New York: Academic Press.

 

 

 

Articles publiŽs dans les revues avec comitŽ de lecture

 

Solares, A., & Kieran, C. (2013). Articulating syntactic and numeric perspectives on equivalence: The case of rational expressions. Educational Studies in Mathematics, 84(1), 115-148. DOI: 10.1007/s10649-013-9473-7.

 

Kieran, C., Boileau, A., Tanguay, D., & Drijvers, P. (2013). Design researchersÕ documentational genesis in a study on equivalence of algebraic expressions. ZDM, The International Journal on Mathematics Education, 45, 1045-1056. DOI: 10.1007/s11858-013-0516-4.

 

Guzman, J., & Kieran, C. (2013). Becoming aware of mathematical gaps in new curricular materials: A resource-based analysis of teaching practice. The Mathematics Enthusiast, 10(1&2), 163-190.

 

Kieran, C. (2012). Commentary: Characterizing meta-level mathematical discourse and accounting theoretically for its development – The instructional and the spontaneous. International Journal of Educational Research, 51–52, 146–150.

 

Kieran, C. (2011). Note de lecture ˆ propos de Ç Ressources vives - le travail documentaire des professeurs en mathŽmatiques È. Recherches en Didactique des MathŽmatiques, 31(1), 131-134.

 

Hitt, F., & Kieran, C. (2009). Constructing knowledge via a peer interaction in a CAS environment with tasks designed from a Task-Technique-Theory perspective. International Journal of Computers for Mathematical Learning, 14, 121-152. (disponible en ligne de Springer Online http://dx.doi.org/10.1007/s10758-009-9151-0)

 

Kieran, C. (2007). Developing algebraic reasoning: The role of sequenced tasks and teacher questions from the primary to the early secondary school levels. Quadrante, XVI(1), 5-26.

 

Kieran, C. (2007). Interpreting and assessing the answers given by the CAS expert. The International Journal for Technology in Mathematics Education, 14, 103-107 (CAME 4 Special Issue, edited by M.K. Heid).

 

Kieran, C., & Drijvers, P., with Boileau, A., Hitt, F., Tanguay, D., Saldanha, L., & Guzm‡n, J. (2006). The co-emergence of machine techniques, paper-and-pencil techniques, and theoretical reflection: A study of CAS use in secondary school algebra. International Journal of Computers for Mathematical Learning, 11, 205-263.

 

Proulx, J., Descamps-Bednarz, N., & Kieran, C. (2006). CaractŽristiques des explications orales en classe de mathŽmatiques. Canadian Journal of Science, Mathematics and Technology Education, 6, 267-292.

 

Kieran, C. (2004). Algebraic thinking in the early grades: What is it?  The Mathematics Educator, 8(1), 139-151.

 

Guzman, J., Kieran, C., & Squalli, H. (2003). La calculadora con pantalla multilinea y el surgimento de estrategias numŽricas en alumnus de primero, segundo y tercer a–o de secundaria. Revista Educaci—n Matem‡tica, 15(2). 105-128.

 

Hershkowitz, R., & Kieran, C. (2002).  Fusionner des reprŽsentations mathŽmatiques machinalement ou en rŽflŽchissant : expŽriences dÕutilisation de calculatrices graphiques. Sciences et techniques Žducatives, 9(1-2), 201-218.

 

Kieran, C. (2001).  Exploring the mathematical discourse of 13-year-old partnered problem solving and its relationship to the mathematics that emerges.  Educational Studies in Mathematics, 46(1-3), 187-228.

 

Sfard, A., &  Kieran, C. (2001).  Cognition as communication: Rethinking learning-by-talking through multi-faceted analysis of students' mathematical interactions.  Mind, Culture, and Activity, 8(1), 42-76.

 

Kieran, C., & Sfard, A.  (1999).  Seeing through symbols: The case of equivalent expressions.  Focus on learning problems in mathematics, 21(1), 1-17.

 

Kieran, C. (1995). A new look at school algebra – past, present, and future. Journal of Mathematical Behavior, 14, 7-12.

 

Dugdale, S., Thompson, P.W., Harvey, W., Demana, F., Waits, B.K., Kieran, C., McConnell, J.W., & Christmas, P. (1995). Technology and algebra curriculum reform: Current issues, potential directions, and research questions. Journal of Computers in Mathematics and Science Teaching, 14, 325-357.

 

Kieran, C.  (1994).  Doing and seeing things differently: A 25-year retrospective of mathematics education research on learning.  Journal for Research in Mathematics Education, 25, 583-607.

 

Kieran, C., & Hillel, J.  (1990).  "It's tough when you have to make the triangles angle":  Insights from a computer-based geometry environment.  Journal of Mathematical Behavior, 9, 99-127.

 

Kieran, C., & Filloy, E.  (1989).  El aprendizaje del algebra escolar desde una perspectiva psicologia.  Ensenanza de las Ciencias, 7, 229-240.

 

Hillel, J., Kieran, C., & Gurtner, J.-L.  (1989).  Solving structured geometric tasks on the computer: The role of feedback in generating strategies.  Educational Studies in Mathematics, 20(1), 1-39.

 

Hillel, J., & Kieran, C.  (1987).  Schemas used by 12-year-olds in solving selected turtle geometry tasks.  Recherches en Didactique des MathŽmatiques, 8(1.2), 61-102.

 

Kieran, C.  (1981).  Concepts associated with the equality symbol.  Educational Studies in Mathematics, 12(3), 317-326.

 

Herscovics, N., & Kieran, C. (1980). Constructing meaning for the concept of equation. Mathematics Teacher, 73(8), 572-580.

 

 

Livres et monographies

 

Fey, J.T., Cuoco, A., Kieran, C., McMullin, L., & Zbiek, R.M. (Eds.). (2003). Computer algebra systems in secondary school mathematics education.  Reston, VA: National Council of Teachers of Mathematics.

 

Kieran, C., Forman, E., & Sfard, A. (Eds.). (2002). Learning discourse: Discursive approaches to research in mathematics education. Dordrecht, The Netherlands: Kluwer Academic.

 

Bednarz, N., Kieran, C., & Lee, L.  (Eds.).  (1996).  Approaches to algebra:  Perspectives for research and teaching.  Dordrecht, The Netherlands: Kluwer Academic.

 

Kieran, C.  (Ed.).  (1995).  New perspectives on school algebra:  Papers and discussions of the ICME-7 Algebra Working Group.  (Journal of Mathematical Behavior--special issue--Vol. 14, #1).  Norwood, NJ: Ablex.

 

Robitaille, D., Wheeler, D., & Kieran, C.  (Eds.).  (1994).  Selected lectures from the 7th International Congress on Mathematical Education.  QuŽbec: Les Presses de l'UniversitŽ Laval.

 

Wagner, S., & Kieran, C.  (Eds.).  (1989).  Research issues in the learning and teaching of algebra.  Reston, VA: National Council of Teachers of Mathematics; Hillsdale, NJ: Lawrence Erlbaum.

 

 

Comptes-rendus de confŽrences scientifiques avec comitŽ de lecture (une sŽlection de comptes-rendus depuis 2001)

 

Reid, D.A., Anderson, A., Thom, J., Suurtamm, C., Mamolo, A., Kieran, C., et al. (2014). Mathematics education in Canada: PME 2014 National Presentation. In P. Liljedahl, C. Nicol, S. Oesterle, & D. Allan (Eds.), Proceedings of the 38th PME and 36th PME-NA (Vol. 1, pp. 263-273). Vancouver, BC: PME et PME-NA.

 

Martinez, C., Guzman, J., & Kieran, C. (2013). El papel de CAS en la promoci—n del razonimiento algebraico y en el surgimiento de teor’a. In L. L—pez Vera (Ed.), La Memoria del VI Seminario Nacionl de Tecnologia Computacional  en la Ense–anza y el Aprendizaje de la Matem‡tica. Nuevo LŽon, MŽxico : ComitŽ cientifico AMIUTEM. 

 

Kieran, C., & Drijvers, P. (2012). The didactical triad of theoretical framework, mathematical topic, and digital tool in research on learning and teaching. In Les Actes du Colloque Hommage ˆ Michle Artigue (Atelier 6: Technologies numŽriques pour lÕenseignement des mathŽmatiques, pp. 5-24). Paris: ComitŽ Scientifique. https://sites.google.com/site/colloqueartigue/short-proceedings

 

Mart’nez, C., Kieran, C., & Guzm‡n, J. (2012). The use of CAS in the simplification of rational expressions and emerging paper-and-pencil techniques. In L.R. Van Zoest, J.-J. Lo, & J.L. Kratky (Eds.), Proceedings of the 34th annual meeting of the North American Chapter of the International Group for the Psychology of Mathematics Education (pp. 1089-1096). Kalamazoo, MI: PME-NA.

 

Solares, A., & Kieran, C. (2012). Equivalence of rational expressions: Articulating syntactic and numeric perspectives. In T. Y. Tso (Ed.), Proceedings of 36th Conference of the International Group for the Psychology of Mathematics Education (Vol. 4, pp 99-106). Taipei, Taiwan: PME. 

 

Jeannotte, D., Kieran, C., & Cyr, S. (2012). Composantes dÕun modle du raisonnement mathŽmatique : un aperu. In F. Hitt & C. CortŽs (Eds.), Formation ˆ la recherche en didactique des mathŽmatiques (pp. 72-79). Longueuil, QC : Loze-Dion.

 

Kieran, C., Tanguay, D., & Solares, A. (2011). Teachers participating in a research project on learning: The spontaneous shaping of researcher-designed resources within classroom teaching practice. In B. Ubuz (Ed.), Proceedings of 35th Conference of the International Group for the Psychology of Mathematics Education (Vol. 3, pp. 81-88). Ankara, Turkey: PME Program Committee.

 

Guzm‡n, J., Kieran, C., & Mart’nez, C. (2011). Simplification of rational algebraic expressions in a CAS environment: A technical-theoretical approach. In B. Ubuz (Ed.), Proceedings of 35th Conference of the International Grooup for the Psychology of Mathematics Education (Vol. 2, pp. 481-488). Ankara, Turkey: PME Program Committee.

 

Guzm‡n, J., Kieran, C., & Mart’nez, C. (2010). The role of Computer Algebra Systems (CAS) and a task on the simplification of rational expressions designed with a technical-theoretical approach. In P. Brosnan, D.B. Erchick, & L. Flevares (Eds.), Proceedings of the 32nd PME-NA Conference (pp. 1497-1505). Columbus, OH: PME-NA Program Committee.

 

Kieran, C. & Guzm‡n, J. (2009). Developing teacher awareness of the roles of technology and novel tasks: An example involving proofs and proving in high school algebra. In M. Tzekaki, M. Kaldrimidou, & H. Sakonidis (Eds.), Proceedings of the 33rd Conference of the International Group for the Psychology of Mathematics Education (PME) (Vol. 3, pp. 321-328). Thessaloniki, Greece: PME Program Committee.

 

Kieran, C., Guzm‡n, J., Boileau, A., Tanguay, D., & Drijvers, P. (2008). Orchestrating whole-class discussions in algebra with CAS technology. In O. Figueras, J.-L. Cortina, S. Alatorre, T. Rojano, & A. Sepœlveda (Eds.), Proceedings of the joint 32nd PME Conference and 30th PME-NA Conference (Vol. 3, pp. 249-256). Morelia, Mexico: PME et PME-NA.

 

Kieran, C., & Damboise, C. (2007). ÒHow can we describe the relation between the factored form and the expanded form of these trinomials? – We donÕt even know if our paper-and-pencil factorizations are rightÓ: The case for Computer Algebra Systems (CAS) with weaker algebra students. In J.H. Woo, H.C. Lew, K.S. Park, & D.Y. Seo (Eds.), Proceedings of the 31st PME (Vol. 3, pp. 105-112). Seoul, Korea: PME.

 

Bartlo, J., Saldanha, L., & Kieran, C. (2007).  Attending to structure and form in algebra: Challenges in designing CAS-centered instruction that supports construing patterns and relationships among algebraic expressions. In T. Lamberg, & L.R. Wiest (Eds.), Proceedings of the 29th annual meeting of the North American Chapter of the International Group for the Psychology of Mathematics Education (CD version). Lake Tahoe, NV: PME-NA.

 

Kieran, C., & Drijvers, P., with Boileau, A., Hitt, F., Tanguay, D., Saldanha, L., & Guzm‡n, J. (2006). Learning about equivalence, equality and equation in a CAS environment: The interaction of machine techniques, paper-and-pencil techniques, and theorizing. In C. Hoyles, J.-B. Lagrange, & N. Sinclair (Eds.), Proceedings of the 17th ICMI Study, ÒDigital technologies and mathematics teaching and learning.Ó [CD-ROM]. Hanoi, Viet-Nam: 17th ICMI Study. Disponible en-ligne :

http://icmistudy17.didirem.math.jussieu.fr/doku.php#proceedings_of_the_study_conference

 

Kieran, C. (2006). A response to Ôalgebraic thinking and the generalization of patterns.Õ In S. Alatorre, J.L. Cortina, M. S‡iz, & A. MŽndez (Eds.), Proceedings of 28th Annual Meeting of PME-NA (confŽrence plŽnire invitŽe; CD version). MŽrida, Mexico: PME-NA Program Committee.

 

Drijvers, P., & Kieran, C., with Boileau, A., Hitt, F., Tanguay, D., Saldanha, L., Guzm‡n, J. (2006). Reconciling factorizations made with CAS and with paper-and-pencil: The power of confronting two media. In J. Novotn‡, H. Moraov‡, M. Kr‡tk‡, & N. Stehlikov‡ (Eds.), Proceedings of the 30th PME (Vol. 2, pp. 473-480). Prague, Czech Republic: PME.

 

Sacristan, A. I., & Kieran, C. (2006). BryanÕs story: Classroom miscommunication about general symbolic notation and the emergence of a conjecture during CAS-based algebra activity. In J. Novotn‡, H. Moraov‡, M. Kr‡tk‡, & N. Stehlikov‡ (Eds.),  Proceedings of the 30th PME (Vol. 5, pp. 1-8). Prague, Czech Republic: PME.

 

Kieran, C., Boileau, A., Saldanha, L., Hitt, F., Tanguay, D., & Guzm‡n, J. (2006). Le r™le des calculatrices symboliques dans lՎmergence de la pensŽe algŽbrique : le cas des expressions Žquivalentes. Actes du colloque EMF2006 (Espace MathŽmatique Francophone, mai 2006). Sherbrooke, QC : EMF.

         (au 6 octobre, 2006, de http://ermeweb.free.fr/definitif/)

 

Kieran, C. (2005). Some results from the PISA 2003 international assessment of mathematics learning: What makes items difficult for students? In H. L. Chick & J. L. Vincent (Eds.), Proceedings of 29th PME (plenary panel contribution, Vol. 1, pp. 83-86). Melbourne, Australia: PME.

 

Kieran, C., &  Saldanha, L. (2005). Computer algebra systems (CAS) as a tool for coaxing the emergence of reasoning about equivalence of algebraic expressions. In H. L. Chick & J. L. Vincent (Eds.), Proceedings of 29th PME (Vol. 3, pp. 193-200). Melbourne, Australia: PME.

 

Saldanha, L., & Kieran. C. (2005). A slippery slope between equivalence and equality: Exploring studentsÕ reasoning in the context of algebraic instruction involving a computer algebra system. In Proceedings of the 27th Annual Meeting of PME-NA (CD version). Roanoke, VA: PME-NA.

 

Kieran, C. (2004). The equation / inequality connection in constructing meaning for inequality situations. In M. Johnsen H¿ines & A. Berit Fuglestad (Eds.), Proceedings of 28th PME (Vol. 1, pp. 143-148).  Bergen, Norway: PME.

 

Kieran, C., & Guzman, J. (2004). T‰che, technique et thŽorie : Une recherche sur lÕinstrumentation de la calculatrice ˆ affichage graphique et la co-Žmergence de la pensŽe numŽrique chez des Žlves de 12 ˆ 15 ans. In J.B. Lagrange, M. Artigue, D. Guin, C. Laborde, D. Lenne et L. Trouche (Eds.), IntŽgration des technologies dans lÕenseignement des mathŽmatiques (Actes en ligne du Colloque EuropŽen ITEM, Reims, juin 2003). (http://www.reims.iufm.fr/Recherche/Cadre_recherche.htm).

 

Proulx, J., Kieran, C., & Bednarz, N. (2004). Case studies of future secondary level mathematics teachersÕ mode of explaining.  In D.E. McDougall & J.A. Ross (Eds.), Proceedings of the 26th PME-NA (pp. 1253-1264). Toronto, ON: PME-NA.

 

Kieran, C., & Guzman, J.  (2003). The spontaneous emergence of elementary number-theoretic concepts and techniques in interaction with computing technology. In N.A. Pateman, B.J. Dougherty, & J. Zilliox (Eds.), Proceedings of 27th PME (Vol. 3, pp. 141-148).  Honolulu, HI: PME.

 

Guzman, J., & Kieran, C. (2002).  The role of calculators in instrumental genesis: The case of Nicolas and factors and divisors.  In A.D. Cockburn & E. Nardi (Eds.), Proceedings of 26th PME (Vol. 3, pp. 41-48).  Norwich, UK: PME.

 

Kieran, C. (2001).  Looking at the role of technology in facilitating the transition from arithmetic to algebraic thinking through the lens of a model of algebraic activity. In K. Stacey, H. Chick, J. Vincent, & J. Vincent (Eds.), Proceedings of the 12th ICMI Study Conference on the future of the teaching and learning of algebra (Vol. 3, pp. 713-720; cet article a ŽtŽ traduit ˆ lÕespagnol en 2007 et republiŽ dans la revue Revista EMA). Melbourne, Australia: ICMI-12 Program Committee.

 

Hershkowitz, R., & Kieran, C.  (2001). Algorithmic and meaningful ways of joining together representatives within the same mathematical activity: An experience with graphing calculators. In M. van den Heuvel-Panhuizen (Ed.),  Proceedings of 25th International Conference for the Psychology of Mathematics Education (Vol. 1, pp. 96-107).  Utrecht, The Netherlands: PME.

 

Guzman, J., Kieran, C., & Squalli, H.  (2001).  The multi-line-screen calculator and the emergence of numerical strategies in secondary 1, 2, and 3 students.  In M. van den Heuvel-Panhuizen (Ed.), Proceedings of the 25th International Conference for the Psychology of Mathematics Education (Vol. 1, p. 312).  Utrecht, The Netherlands: PME.